Rufen Sie uns einfach an, und wir beraten Sie gerne zu unserem Seminar- und Studienangebot.

Unsere Ansprechpartner:

Michael Rabbat, Dipl.-Kfm.
MBA Chief Operating Officer

Claudia Hardmeier
Kunden-Center
Studienbetreuung

Institute und Kompetenzzentren

Bindeglied zu einer Vielzahl an
Unternehmen und Organisationen

Erfahren Sie mehr ...

Forschung

Was Management-Forschung wirklich
leisten kann

Erfahren Sie mehr ...

Alumni

Wissenstransfer und
Erfahrungsaustausch

Erfahren Sie mehr ...

Referenzen

Feedback und
Teilnehmerstimmen

Erfahren Sie mehr ...

News

SGBS aktuell:
Wissen und
Anwendung

Erfahren Sie mehr ...

Klimaneutrale Seminare

Auf dem Weg zu
klimaneutralen Seminaren.

Erfahren Sie mehr ...

Juan Diego Flórez Association

Mit musikalischer Bildung
gegen Armut:

Erfahren Sie mehr ...

2.3.2 Share of Wallet portfolio in MTPRO practice

The next step is to analyse how many customers are positioned within each of the nine clusters. In addition, the average revenue per customer in each cluster is calculated according to the country’s database. The analysis of these two variables allows us to assess which customer clusters are the most economical ones to develop to a higher level. Figure 8 on the next page is a calculated share of wallet portfolio performed by MT-CIS.

Figure 8: Share of wallet analysis of MTPRO-CIS (Source: On the basis of share of wallet <a href=

portfolio of MT-CIS – appendix 2)" class="wp-image-9055 size-full" height="695" src="https://sgbs.ch/wp-content/uploads/Figure-8-Share-of-wallet-analysis-of-MTPRO-CIS.png" width="641"> Figure 8: Share of wallet analysis of MTPRO-CIS (Source: On the basis of share of wallet portfolio of MT-CIS – appendix 2)

Each manufacturing site with more than 80 loops is considered a single customer, even if the individual sites belong to the same corporations. For instance, the corporation Norilsk Nickel in Russia/ CIS has three manufacturing sites with each of them having far above 80 loops.

The following findings of figure 8 can be shortly summarised:

  • Very low number of A1 customers in relation to total number of [A] customers
    ([A1/A2/A3]). That means the whole [A] account cluster is largely underpenetrated.
  • Bigger number of [B] and [C] accounts but even the B1 and C1 customer only bring small revenues
  • Very large numbers of B3 and C3 customers who on average only buy for a low USD value
  • The most interesting finding is that the average revenue per customer of the A2 and A1 cluster, compared to C2 and C1, is by more than twenty fold higher in USD value.